Перечень публикаций касающихся механики "разрушения и трещинообразования" гиперупругих материалов

#1 29 мая 2023 в 16:32

Перечень публикаций касающихся механики «разрушения и трещинообразования» гиперупругих материалов


Ahagon, A., Gent, A. N. (1975). Threshold fracture energies for elastomers. Journal of Polymer Science:
Polymer Physics Edition, 13(10), 1903-1911.
Aït-Bachir, M., Mars, W. V., Verron, E. (2012). Energy release rate of small cracks in hyperelastic
materials. International Journal of Non-Linear Mechanics, 47(4), 22-29.
Ambacher, H., Enderle, H. F., Kilian, H. G., Sauter, A. (1989). Relaxation in permanent networks.
In Relaxation in Polymers (pp. 209-220). Steinkopff.
Arruda, E. M., Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior
of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412.
ASTM Standard E1049-85, 1999. Standard Practices for Cycle Counting in Fatigue Analysis.
Barbash, K. P., Mars, W. V. (2016). Critical Plane Analysis of Rubber Bushing Durability under Road
Loads (No. 2016-01-0393). SAE Technical Paper.
Bhowmick, A. K. (1986). Tear strength of elastomers over a range of rates, temperatures and
crosslinking: tearing energy spectra. Journal of materials science, 21(11), 3927-3932.
Bhowmick, A. K. (1988). Threshold Fracture of Elastomers. Polymer Reviews,28(3-4), 339-370.
Bhowmick, A. K., Neogi, C., Basu, S. P. (1990). Threshold tear strength of carbon black filled rubber
vulcanizates. Journal of Applied Polymer Science, 41(5‐6), 917-928.
Boyce, M. C. (1996). Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber
elasticity. Rubber chemistry and technology,69(5), 781-785.
M. Braden and A. N. Gent (1960a) The Attack of Ozone on Stretched Rubber Vulcanizates. I. The Rate of
Cut Growth. Rubber Chemistry and Technology: September 1960, Vol. 33, No. 4, pp. 1142-1155.
M. Braden and A. N. Gent (1960b) The Attack of Ozone on Stretched Rubber Vulcanizates. II. Conditions
for Cut Growth. Rubber Chemistry and Technology: September 1960, Vol. 33, No. 4, pp. 1156-1165.
M. Braden and A. N. Gent (1962) The Mechanics of Ozone Cracking. Rubber Chemistry and Technology:
March 1962, Vol. 35, No. 1, pp. 200-209.
Busfield, JJC, Tsunoda K, Davies CKL, Thomas AG, 2002, «Contributions of time dependent and cyclic
crack growth to the crack growth behavior of non-strain crystallizing elastomers», Rubber Chemistry and
Technology, Vol. 75, pp. 643-656.
Enderle, H. F., Kilian, H. G. (1987). General deformation modes of a van der Waals network. In Permanent
and Transient Networks (pp. 55-61). Steinkopff.
Gent, A. N., Lindley, P. B., Thomas, A. G. (1964). Cut growth and fatigue of rubbers. I. The relationship
between cut growth and fatigue. Journal of Applied Polymer Science, 8(1), 455-466.
Gent, A. N., Mars, W. V. (2013). Chapter 10-Strength of Elastomers. The Science and Technology of
Rubber (Fourth Edition), Academic Press, Boston, 473-516.
Gent, A. N., McGrath, J. E. (1965). Effect of temperature on ozone cracking of rubbers. Journal of Polymer
Science Part A: General Papers,3(4), 1473-1482.
Gent, A. N., Razzaghi-Kashani, M., Hamed, G. R. (2003). Why do cracks turn sideways?.. Rubber
chemistry and Technology, 76(1), 122-131.
Gent, A. N., Tobias, R. H. (1982). Threshold tear strength of elastomers.Journal of Polymer Science:
Polymer Physics Edition, 20(11), 2051-2058.fe-safe/Rubber Theory Manual
Copyright © 2016 Endurica LLC
Vol. 1 Section 1 Issue: 21 Date: 19.12.16
Volume 1 7-32
Harbour, R. J., Fatemi, A., Mars, W. V. (2007). Fatigue crack growth of filled rubber under constant and
variable amplitude loading conditions. Fatigue & Fracture of Engineering Materials & Structures, 30(7),
640-652.
Huneau, B. (2011). Strain-induced crystallization of natural rubber: a review of X-ray diffraction
investigations. Rubber chemistry and technology, 84(3), 425-452.
Huneau, B., Masquelier, I., Marco, Y., Le Saux, V., Noizet, S., Schiel, C., Charrier, P. (2016). Fatigue crack
initiation in a carbon black-filled natural rubber. Rubber Chemistry and Technology, 89(1), 126-141.
Kadir, A., Thomas, A. G. (1981). Tear behavior of rubbers over a wide range of rates. Rubber Chemistry
and Technology, 54(1), 15-23.
Lake GJ, Lindley PB, 1964, “Cut Growth and Fatigue of Rubbers. II. Experiments on a Noncrystallizing
Rubber”, Journal of Applied Polymer Science, Vol. 8, pp. 707-721.
Lake, G. J., Lindley, P. B. (1965). The mechanical fatigue limit for rubber. Journal of Applied Polymer
Science, 9(4), 1233-1251.
Lake, G. J., Thomas, A. G. (1967). The strength of highly elastic materials. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences, 300(1460), 108-119.
G. J. Lake (1970) Ozone Cracking and Protection of Rubber. Rubber Chemistry and Technology:
September 1970, Vol. 43, No. 5, pp. 1230-1254.
Lake, G. J. (1972). Mechanical fatigue of rubber. Rubber Chemistry and Technology, 45(1), 309-328.
Lake, G. J., Yeoh, O. H. (1978). Measurement of rubber cutting resistance in the absence of
friction. International Journal of Fracture, 14(5), 509-526.
Robert W. Layer and Robert P. Lattimer (1990) Protection of Rubber against Ozone. Rubber Chemistry
and Technology: July 1990, Vol. 63, No. 3, pp. 426-450.
Lindley PB, 1973, “Relation between hysteresis and the dynamic crack growth resistance of natural
rubber”, International Journal of Fracture, Vol. 9, pp. 449-461.
Kilian, H. G. (1981). Equation of state of real networks. Polymer, 22(2), 209-217.
Marckmann, G., Verron, E. (2006). Comparison of hyperelastic models for rubber-like materials. Rubber
chemistry and technology, 79(5), 835-858.
Mars, W. V. (2002). Cracking energy density as a predictor of fatigue life under multiaxial
conditions. Rubber Chemistry and Technology, 75(1), 1-17.
Mars, W. V. (2003). U.S. Patent No. 6,634,236. Washington, DC: U.S. Patent and Trademark Office.
Mars, W. V., Fatemi A, 2003, A phenomenological model for the effect of R ratio on fatigue of straincrystallizing rubbers, Rubber Chemistry and Technology, Vol 76, No. 5.
Mars, W. V. (2004). Evaluation of a pseudo-elastic model for the Mullins effect. Tire Science and
Technology, 32(3), 120-145.
Mars, W. V., Fatemi, A. (2006). Nucleation and growth of small fatigue cracks in filled natural rubber
under multiaxial loading. Journal of materials science, 41(22), 7324-7332.
W. V. Mars (2007) Fatigue Life Prediction for Elastomeric Structures. Rubber Chemistry and Technology:
July 2007, Vol. 80, No. 3, pp. 481-503.
Mars, W. V. (2009). Computed dependence of rubber's fatigue behavior on strain crystallization. Rubber
Chemistry and Technology, 82(1), 51-61.
Mazich, K. A., Samus, M. A., Smith, C. A., Rossi, G. (1991). Threshold fracture of lightly crosslinked
networks. Macromolecules, 24(10), 2766-2769.
Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11(9), 582-592.fe-safe/Rubber Theory Manual
Copyright © 2016 Endurica LLC
Vol. 1 Section 1 Issue: 21 Date: 19.12.16
Volume 1 7-33
Muhr, A. H. (2005). Modeling the stress-strain behavior of rubber. Rubber chemistry and
technology, 78(3), 391-425.
Ogden, R. W. (1972). Large deformation isotropic elasticity-on the correlation of theory and experiment
for incompressible rubberlike solids. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences (Vol. 326, No. 1567, pp. 565-584). The Royal Society.
Ogden, R. W., Roxburgh, D. G. (1999). A pseudo–elastic model for the Mullins effect in filled rubber.
In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol.
455, No. 1988, pp. 2861-2877). The Royal Society.
Rivlin, R. S. (1948a). Some topics in finite elasticity I. Fundamental concepts. Philosophical Transactions
of the Royal Society A, 240, 459-490.
Rivlin, R. S., Thomas, A. G. (1953). Rupture of rubber. I. Characteristic energy for tearing. Journal of
Polymer Science, 10(3), 291-318.
Thomas AG, 1958, «Rupture of Rubber. V. Cut Growth in Natural Rubber Vulcanizates», Journal of
Polymer Science, Vol. 31, pp. 467-480.
Treloar, L. R. G. (1943). The elasticity of a network of long-chain molecules. I. Transactions of the
Faraday Society, 39, 36-41.
Yeoh, O. H. (1990). Characterization of elastic properties of carbon-black-filled rubber
vulcanizates. Rubber chemistry and technology, 63(5), 792-805.
Williams, I. (1926). Oxidation of Rubber Exposed to Light. Industrial & Engineering Chemistry, 18(4),
367-369.

Вы не можете отвечать в этой теме.
Войдите или зарегистрируйтесь, чтобы писать на форуме.
Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.